

Handout Workshop 2019 – Microcomputers in Technical Applications page 1

Handout Workshop 2019 - Microcomputers in Technical Applications
by Chris Hendriks (hendrikschris@yahoo.com)

1. Introduction – a new information revolutions
Three major developments will together form a new information revolution:
1. Microcomputers will be present in everything, all devices in home and in industry – these computers generate an enormous
amount of data.
2. Every computer, also those in devices, will be connected to the internet (Internet of Things)– this causes data to be available
everywhere.
3. Data will be analyzed by Artificial Intelligence (AI) software. This opens the possibility to deal with more data as compared to
the use of traditional software; and consequently, new applications are being developed. In technical applications the input for
AI systems comes from intelligent sensors and the output is used to feed into intelligent actuators.

 bulk data

The focus of the workshop is: computers in the technical (industrial) environment. In this environment large systems can be
distinguished since every device (sensor or actuator) is connected to one or more central computer systems. The flow of
information corresponds to the basic architecture of a robot (and a human!): intelligent sensors feed data into a (central) AI
system which feeds intelligent actuators. In the workshop we will focus on intelligent sensors and actuators and their
communication with a (central) system.

AI was initially boosted by the (valuable) bulk data produced in the social environment (apps on phone or tablet, increased web
surfing, cameras everywhere). Bulk data could only be handled by AI software. The technical/industrial environment followed.
Initiatives in the area of linked administrative databases are following in for instance stock markets.
AI will be the major development for the coming decades. But AI can only show its relevance by receiving large amounts of data!

The drawback of this high degree of integrations is the increased risk of misuse of information and spreading of malware. Hence,
security becomes a major issue.

2. Raspberry Pi – single-board computer
A controller (for sensor or actuator) in the development phase needs a human interface (terminal/keyboard or notebook) but in
the operational phase the controller consists of a few chips communicating with central computers through wifi or Bluetooth and
with the sensors/actuators through direct wiring. The raspberry Pi is a mix between a controller (focusing on I/O activities) and a
general-purpose computer (focusing on human interaction). The explosive growth in the number of computers/controllers like
this have resulted in an enormous drop in price ($10 - $50) and an increase in availability of software.

The Raspberry Pi is a typical representative of the marriage between the controller and the general-purpose computer. It is
supplied with an Operating System from the Linux family. When opening the (virtual) terminal the regular Linux commands can
be executed. For convenience we usually work from an IDE (integrated development environment) or IDLE (integrated
development and learning environment). An IDE allows you to write and run a program. We will use IDE’s with Python as its
programming language. Python is a programming language from the C++ family enriched with I/O features for connection to
physical systems. Usually the Raspberry is connected to a laptop through an ethernet cable or Wifi network. For implementing
the system software and initial programming a terminal and keyboard are to be connected to the Raspberry.

In typical applications it has advantages to have the raspberry close to the sensor/actuator since usually the cabling between the
Raspberry and the plant is more complex than the hardware for wireless communication. The Raspberry will need a local power
supply – however, local power is needed anyway for the sensors and actuators.

 Artificial Intelligence/ neural networks/ deep learning

computers in

social environment

(phones, cameras, etc.)

computers in

technical env.

(sensors, actuators)

computers in

administrative env.

(databases linked)

computer in everything - small, cheap and with wifi/bluetooth

major developments

(arrows indicate their

impact on the various

areas)

mailto:hendrikschris@yahoo.com

Handout Workshop 2019 – Microcomputers in Technical Applications page 2

We will have a look at the Raspberry PI (RPi) in more detail. Apart from the processor and memory, the General-Purpose Input
Output (GPIO) bus is an important component of the RPi. There are two ways of numbering the GPIO pins – by counting on the
board (BOARD numbering) or by using their name consisting of the letters ‘GPIO’ and a number (we call this BCM numbering; in
a program only, the number is used). In most exercises we will use BOARD numbering. General freeware (public domain and
open source software) uses BCM numbering because of its independency of model and type.
Characteristics of the GPIO bus:

- port 3 and 5 have a pull-up resistor; the others have pull-down resistors;
- all ports can be programmed to be input or output ports; which state is safe when connecting external circuits?
- some groups of pins can also be programmed to be used for specific protocols. In the workshop we will use for instance

the I2C (Inter Integrated Circuit) protocol available on pin 3 and 5.

3. Software development

3.1 IDE
For programming the Raspberry we use Python. Like most other modern languages Python is based on Object Oriented
Programming (OOP). OOP software is based on objects. A possible metaphor to illustrate the concept of an object is the
following:
You have an office that you can ask things to be done (e.g. executing administrative operations). You can however only give your
orders through a counter. That’s where you hand in your order plus the necessary data and that is where you receive the results.
The advantage of an object is its clear interference with the rest of the software. If ‘the office’ does its job well, you can rely on it
for 100 %. Usually an object is built up of other objects: a building has a counter where you hand in your orders; inside, other
offices with counters are being used to execute specific parts of your order. And so on. We will use this metaphor later on again
when we discuss the concept of importing objects.

 hardware

 system management software

IDE

terminal
 applications +

 daemons

 local user

 interface. Remote Desktop

Connection

(pc or laptop)

Wifi, LAN,

WAN

monitor/

keyboard

Handout Workshop 2019 – Microcomputers in Technical Applications page 3

The easiest introduction to Python1 is through an IDE (Integrated Development Environment). Through the raspberry icon and
selecting ‘programming’ you can choose an IDE (Python 3 IDLE or Thonny).
The IDE gives you a REPL (Read-Evaluate-Print-Loop) which is a prompt for entering Python commands. As it's a REPL you even
get the output of commands printed to the screen without using print. We can use this REPL to, amongst many other things,
interpret variables or do math and evaluate expressions. For example:
>>> name = "Sarah"
>>> "Hello " + name
'Hello Sarah'

Alternatively, you can write a program with the text editor and run (or debug) it afterwards.
To create a Python program (which is simply a text file) in the Python IDLE, click File > New File and you'll be given a blank
window (in Thonny the blank window is already there). This is an empty file, not a Python prompt. You write a Python file in this
window, save it, then run it and you'll see the output in the other window.
For example, in the text window, type the following program and then run it after saving:

3.2 Basic Python code
Indentation
Python uses indentation to show that code belongs to an earlier statement (nesting). Use the TAB key to get the proper
indentation. For example, a for loop in
Python is shown in the box.
Also check what happens if you leave
out one or both of the indentations.

Variables
To save a value to a variable, assign it
like this (see box):

Comments
Comments are ignored in the program but are there for you to leave notes. They are denoted by the hash # symbol. Multi-line
comments can also use triple quotes like this:
"""
This is how you can also include comments; sometimes it is a convenient way to exclude part of the program.
"""
If statements
You can use if statements
for control flow (see box):

While statement
The while statement also
controls the program flow
(like the ‘for’-loop). The
following code will print
'hi' ten times (see box):

Python Lists
The ‘list’ can be written as a series of comma-separated values (items) between square brackets
Creating a list is as simple as putting different comma-separated values between square brackets.

To access a value in a lists, use the
square brackets along with the index.
To add an element in a list use the
append() method.
When the code in the box is executed, it produces the following result: l[0] is: physics ; and l[4] is: 3.5

1 A good book for learning Python is: http://greenteapress.com/thinkpython/thinkpython.pdf

n = 3
m = 16
print(“The sum is“,n+m)

for i in range(10): # i starts at 0 and is incremented every loop until i=9
 print("Hello") # this print loop is executed with i=9 for the last time
 print(i)

name = "Bob" # the type str (string) is assigned automatically
age = 15 # the type int (integer) is assigned automatically
print (name,”is”,age,”years old”)

name = "Joe" # or choose any other name
if len(name) > 3: # ‘len’ is a standard function; returns the length of a text variable
 print("Nice name,”,name)
else:
 print("That's a short name,",name)

counter = 10
while (counter>0): # <: smaller than; >: larger than; ==: equal to; !=: not equal to
 print("hi")
 counter=counter-1

l = ['physics', 'chemistry', 1997, 2000] # elements can be of different types
l.append(3.5)
print ("l[0] is:",l[0],”; and l[4] is:”,l[4]))

http://greenteapress.com/thinkpython/thinkpython.pdf

Handout Workshop 2019 – Microcomputers in Technical Applications page 4

Functions
The syntax of a function is shown in the box.
Note the indentation and the colon!

Once the basic structure of a function is finalized, you can execute it by calling it from the program (object) it is defined in or
directly from the Python prompt. Following is the example to call the function printme():

You can return a value from a function as follows:

When the above code is executed, it produces the following result:
Inside the function : 30
Outside the function : 30

Objects and classes; modules, packages and libraries; import.
Objects are an encapsulation of variables and/or functions into a single entity (the office with the counter in our earlier
metaphor).
A Class is like an object constructor, or a "blueprint" for creating objects.
Modules, packages and libraries are a way to group objects.
Modules in Python are simply Python files with a .py extension. The name of the module will be the name of the file. A Python
module can have a set of functions, classes or variables defined and implemented. Any program (script) is a module.
Packages are namespaces (= common collection of names that are used) which can contain multiple modules (and/or other
packages). They can be considered as directories.
The term library does not have any specific contextual meaning in Python. When used in Python, a library is used loosely to
describe a collection of the core modules. Sometimes it is used as synonym for package.
We can use a module we created earlier by using the import statement. For instance: import time

While importing a module we can give it a different name. For instance: import time as t

We can refer to a particular function from an imported module of a package by using the dot-operator:

Alternatively, we can import ‘sleep’ as a separate module:

We can also import all functions of a module
with ‘from time import *’; in that case we can
only refer to a function by the name it has in the
module.

def functionname(parameters):
.

statements

.

return [expression]

def printme(str): # This prints a string passed into this function as a parameter
 print(str)
 return;
printme("I'm a call to user defined function!") # Now you call printme

def sum(arg1, arg2): # Add both the parameters and return them.
 total = arg1 + arg2
 print ("Inside the function : ", total)
 return total
result_addition = sum(10, 20);
print ("Outside the function : ", result_addition)

import time as t # imports the module ‘time’ under the name ‘t’
t.sleep(5) # makes the program sleep for 5 seconds; ‘sleep’ is an object within the object ‘time’

from time import sleep as s # imports the module ‘sleep’ from ‘time’ under the name ‘s’
s(5) # makes the program sleep for 5 seconds

from time import * # imports all modules from time
sleep(5) # makes the program sleep for 5 seconds

Handout Workshop 2019 – Microcomputers in Technical Applications page 5

Exception handling
Assuming we want to ask the user to enter an integer number. If we use input(), the input will be a string, which we have to cast
into an integer. If the input has not been a valid integer, we will generate (raise) a ValueError. We show this in the following
interactive session:
>>> n = int(input("Please enter a number: "))
Please enter a number: 23.5
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '23.5'

With the aid of exception handling, we can write robust code for
reading an integer from input (see box).

It's a loop, which breaks only, if a valid integer has been given.
The example script works like this:
The while loop is entered. The code within the try clause will be
executed statement by statement. If no exception occurs during the
execution, the execution will reach the break statement and the while
loop will be left. If an exception occurs, i.e. an incorrect value was
entered for n, the rest of the try block will be skipped and the except
clause will be executed. The raised error, in our case a ValueError, has to match one of the names after except (in our example
only one, i.e. "ValueError:"). After having printed the text of the print statement in the except-block, the execution does another
loop. It starts with a new input(). The loop continues indefinitely until the break is executed.

Consider the following code (the variable __name__ gets the value '__main__' if the module is executed as a program (what is
the advantage of defining the function p outside the main program?):

3.3 Terminal mode
We can also work in the terminal by clicking on the terminal icon. Since the operating system is Linux-like we can enter most
Linux commands through the terminal. For instance, before switching off we give the command: sudo shutdown now (‘sudo’
stands for ‘superuser do’).

4 On/off outputs and inputs
Most ports of the General-Purpose Input Output bus (GPIO) can be input or output; some are Ground (0 V) or 5 V or 3.3 V. The
program determines whether a port is input or output. In both cases a logical 0 is equal to 0 V and a logical 1 is equal to 3.3 V.
Some ports have a pull-up2 (e.g. port 5), others have an internal pull-down (e.g. port 40).

2 A pull-up resistor is connected between input or output and 3.3 V; in that way the port becomes 1 if nothing is connected to it (input) or no

output value is specified. In a similar way a pull-down makes a floating port equal to 0.

def p(): # the function p is defined
 i=1
 while True:
 print(i)
 i=i+1
if __name__ == '__main__': # if the object was started as a program the code is executed

try:
p() # call the function p

except KeyboardInterrupt: # pressing a key causes a keyboard interrupt
pass # with a keyboard interrupt the loop is left

finally: # the code in the finally clause is always executed
 print(“end”)

while True:
 try:
 n = input("Please enter an integer: ")
 n = int(n)
 break
 except ValueError:
 print("No valid integer! Please try again ...")
print ("Great, you successfully entered an integer!")

Handout Workshop 2019 – Microcomputers in Technical Applications page 6

4.1 Switching a LED on and off using the Raspberry PI
This experiment demonstrates how to attach a LED to the GPIO connector on your
Raspberry PI and to make it blink with a simple Python program.
In order to switch a LED on and off programmatically we need to connect it
between a general-purpose input/output pin (GPIO pin) and the ground or Vcc. A
resistor is necessary to limit the current. In the case of the traffic light the three
LED’s have a common ground.
Build the following circuit:
- take one of the colours of the traffic light (for instance the R-pin) and connect it
through a resistor (any resistor between 300 and 500 Ohm will do) to a GPIO pin;
you can choose any GPIO input/output pin – let's take pin 40;
- connect the common ground-pin of the traffic light (GND) to a ground output of
the GPIO connector.

Now we need to make the GPIO pin an output and change the state of the pin
between 1 and 0 to switch the LED on and off. Type the following code into the text
window (you may leave out the comments)

Run your program. We just told the RPi to supply a voltage of 3.3 V to
our circuit using GPIO pin 40. Change the program by making pin 40
False (= 0 Volt) and run the program again.
A warning was given since the GPIO port was still in use. This can be
avoided by adding GPIO.cleanup() at the end of your program.
Add this line to your program and switch the light on again.

We used the name ‘GPIO’ for the object we created by importing
‘RPi.GPIO’. You can give the object any name. Give the object another
name and run the program again (note: the name you give the object
has to be used everywhere in the program where you refer to this
object)

4.2 A complete cycle for the traffic light
Here is a slightly more advanced script that blinks the led on for 2
seconds and then off.
Extend your code as shown in the
box (the added code is in bold; the
comments are optional).

Now we want to let the 3 LEDs go on for 2, 3 and 4 seconds respectively. Build the circuit by connecting the Y and G pin to port
38 and 36 respectively (through resistors). The program could look as shown in the box. Try the program.

import RPi.GPIO as GPIO # Import GPIO library
Red = 40 # Use pin 40 to connect to Red LED
GPIO.setmode(GPIO.BOARD) # Use board pin numbering
GPIO.setup(Red,GPIO.OUT) # Setup GPIO Pin 40 to OUT
GPIO.output(Red,True) # Turn on GPIO pin 40

import RPi.GPIO as GPIO # Import GPIO library
import time # Import 'time' library
Red = 40 # Use pin 40 for the Red LED
timeOnR = 2 # a variable makes it easier to change it later
GPIO.setmode(GPIO.BOARD) # Use board pin numbering
GPIO.setup(Red, GPIO.OUT) # Setup GPIO Pin Red to OUT
GPIO.output(Red,True) # Switch on pin Red
time.sleep(timeOnR) # Wait
GPIO.output(Red,False) # Switch off pin Red
GPIO.cleanup()

Handout Workshop 2019 – Microcomputers in Technical Applications page 7

Now we see that three ‘blocks’ of code are nearly the same. Would it not be possible to write it only once (in this case the
‘blocks’ of code are small but usually they are much larger)? Consider the program in the box. Test it.

import RPi.GPIO as GPIO # Import GPIO library
import time # Import 'time' library

Red = 40 # Use pin 40 to connect to the Red LED
Yellow = 38
Green = 36
timeOnR = 2 # using a variable makes it easier to change it later
timeOnY = 3
timeOnG = 4

GPIO.setmode(GPIO.BOARD) # Use board pin numbering
GPIO.setup(Red, GPIO.OUT) # Setup GPIO Pin Red to OUT
GPIO.setup(Yellow, GPIO.OUT)
GPIO.setup(Green, GPIO.OUT)

GPIO.output(Red,True) # Switch on pin Red
time.sleep(timeOnR) # Wait
GPIO.output(Red,False) # Switch off pin Red

GPIO.output(Yellow,True) # Switch the yellow LED on and off
time.sleep(timeOnY)
GPIO.output(Yellow,False)

GPIO.output(Green,True) # Switch the green LED on and off
time.sleep(timeOnG)
GPIO.output(Green,False)

GPIO.cleanup()

import RPi.GPIO as GPIO # Import GPIO library
import time # Import 'time' library
Red = 40 # Use pin 40 to connect to the Red LED
Yellow = 38
Green = 36
timeOnR = 2 # using a variable makes it easier to change it later
timeOnY = 3
timeOnG = 4
GPIO.setmode(GPIO.BOARD) # Use board pin numbering
GPIO.setup(Red, GPIO.OUT) # Setup GPIO Pin Red to OUT
GPIO.setup(Yellow, GPIO.OUT)
GPIO.setup(Green, GPIO.OUT)

def switchLED (colour,timeOn): # switchLED is an arbitrary name
 GPIO.output(colour,True) # Switch on pin colour
 time.sleep(timeOn) # Wait
 GPIO.output(colour,False) # Switch off pin colour

switchLED (Red,timeOnR) # Switch the red LED on and off
switchLED (Yellow,timeOnY) # Switch the yellow LED on and off
switchLED (Green,timeOnG) # Switch the green LED on and off

GPIO.cleanup()

The code within ‘def’ is named a
function. The function is called
three times (once for each of the
three colors).

The added code is in bold

Handout Workshop 2019 – Microcomputers in Technical Applications page 8

4.3 Blinking yellow light
When the traffic light is not functioning the yellow light blinks.
Write the code to make the yellow light blink for 10 times with 2 seconds on and 1 second off.
Use the while statement to create a loop.

4.4 Use a metal detector as a switch
Use the metal detector to detect a car waiting in front of the traffic light and switch the light to
green. Build the following circuit: the metal detector gets its own 5 V power (the red wire is 5V
and the black wire is 0V; power is taken from the power rail; this power must share a common
Ground with the Pi; why?). Use the output of the metal detector as input to the Pi (you can use
any GPIO input/output pin – in the following example we use pin 32 = GPIO12).

Use the code in the box to read the input of the
metal detector and try the program by moving a metal
object over the detector.

Write a program that makes the traffic light remain red until a car arrives. When a car arrives, the light goes to green, then to
yellow and then to red again. It should remain red for at least 10 seconds and until another car arrives.

4.5 Objects and Classes - functions and methods
Like other modern programming languages Python is object oriented. That means that everything in Python is an object. Data are
objects, the program itself is an object and functions are objects. All of these objects have types and unique IDs.
In Python an important category of objects is the function. The counter-metaphor of the object was discussed earlier. In this
metaphor we compare the function-object with a room with a counter: through the counter you can ask the code of the function
to be executed. Calling the function and handing in some parameter values is like going to the counter giving the parameters
values and asking the function to be executed. One or more values might be returned. The original parameters are not affected.
Objects can ‘contain’ other objects. We can visualize this as a hall in which a number of rooms are built. The hall also has a
counter through which everything within the hall can be accessed. The hall can be part of a larger hall, and so on.
It is up to the designer of the software to choose the halls and rooms in such a way that the software is testable, re-usable and
maintainable.

Going back to our traffic lights. Suppose we have a crossing of two streets (Kingstreet and Queenstreet). That means we have 4
traffic lights (for example Kingstreet-north, Kingstreet-south, Queenstreet-east and Queenstreet-west). For each traffic light we
use the functions for a complete cycle, blinking yellow and car detection. How can we write the program in such a way that it
remains maintainable (which means it has an orderly structure)? Of course we could define functions as we did before and have
an extra variable referring to the traffic light we are working on. More attractive however is to make a blueprint for a general
traffic light and use it to make 4 different objects, one for each traffic light. The blueprint is called a class. The class mechanism
makes it easier to make different objects that have to a large extend the same structure. The class itself is no object, it only
describes the structure of the objects that are made of it afterwards. In that sense it is really a blueprint. The functions defined in
a class are called methods. The object made from a class is called an instance of the class.
Classes are not only valuable when a number of objects are needed that are more or less similar, they become essential when a
number of objects are needed that run in parallel. We will discuss this situation in more detail in chapter 12 Real-time
application.

import RPi.GPIO as G
import time as t
d = 32
G.setmode(G.BOARD)
G.setup(d,G.IN)
Try:
 while (True):
 print (G.input(d))
 t.sleep(1)
except KeyboardInterrupt:
 print ('All done')
G.cleanup()

Handout Workshop 2019 – Microcomputers in Technical Applications page 9

5 PWM (pulse width modulation)

PWM is used in many systems. It means that a periodic signal
is high for a certain part of the cycle and low for the rest of it.
The percentage of time that the signal is high is called the duty
cycle.
By having a frequency of 50Hz or more and varying the duty
cycle the average voltage is varied so we can use PWM to dim
a light.

5.1 Changing the duty cycle
In the following examples we use a multi-color LED. The multi-
color LED we will be using consists of 3 LEDs, one for each of

the primary colors red, green and blue. It can have a common – (ground) or a common + (V).
The R, B and G pins are connected through 330 Ohm resistors to the output pins of the Raspberry (attention: one type of RGB
leds has resistors included; the other one has not – in that case external resistors should be included).
PWM is available through the pigpio library. The pigpio library generates an accurate pwm signal (we could also generate a pwm
signal in software but that is less accurate). Pigpio uses BCM numbering.
Since pigpio affects the hardware directly we have to start a specific program at the highest command level. For this purpose,
open the terminal and enter the shell command: sudo pigpiod (‘sudo’ stands for ‘superuser do’; pigpiod is the daemon for
pigpio). At the end of our program we have to terminate the daemon with the shell command: sudo killall pigpiod.

Let’s make a PWM signal at the output port 21 (BCM numbering; that is 40 in BOARD numbering) of 1 Hz. The output port is
connected through a 330 Ohm resistor to the red input of the multicolor led.
We create a PWM instance (object) with the command pwm=pigpio.pi() whereby pwm is an arbitrary name.
The code in the box creates the PWM signal with a duty cycle of 25 %:

class TrafficLight:
 def __init__(self,red,yellow,green,detector):
 self.red=red # the parameters that will be passed on are copied
 self.yellow=yellow # to parameters within the object that is made of
 self.green=green # the class later; in the metaphor of the room: a copy
 self.detector=detector # is made of the parameters instead of the original
 # parameters being used
 def cycle(self):
 GPIO.output(self.red,True) # Switch on pin Red
 time.sleep(timeOnR) # Wait
 GPIO.output(self.red,False) # Switch off pin Red
 :
 def blink(self): # the blink method is defined
 :
 def detect(self): # the method that detects whether a car has arrived
 :
imports and initializations
 :
4 objects are instantiated, one for each traffic light
north = TrafficLight(NorthRed,NorthYellow,NorthGreen,NorthDetector)
south = TrafficLight(SouthRed,SouthYellow,SouthGreen,SouthDetector)
east = TrafficLight(EastRed,EastYellow,EastGreen,EastDetector)
west = TrafficLight(WestRed,WestYellow,WestGreen,WestDetector)

remainder of program code in which we for instance start a cycle at the lights of
Kingstreet-north by the statement: north.cycle();

Handout Workshop 2019 – Microcomputers in Technical Applications page 10

See what happens if we change the duty cycle to 90 % after 10 sec. using the command pwm_r.set_PWM_dutycycle(pin_r,90)
and including another sleep period.
Try other values for the duty cycle.

Try the following exercises:

a. the three leds go on and off after each other;
b. the three leds go on and off so that colors are mixed;
c. make the red light increase in intensity from off to on, in 10 seconds). You will notice that the brightness we experience is

not linear; adjust the minimum and maximum value of the brightness in such a way that it gives a better visual effect.
d. make the three leds slowly increase in intensity and after that slowly decrease in intensity (after each other or

simultaneously).
e. is it possible to increase the intensity of ‘red’ during 5 seconds and at the same time increase the intensity of ‘green’ in 7

seconds?

5.2 Changing the frequency
Replace the LED with a small speaker (buzzer) and give the output a PWM signal with a frequency of 100 Hz and a duty cycle of
50%. What happens if you change the frequency keeping the duty cycle the same?

5.3 Mixing colors
Now suppose we want to switch on one light and have it
go repeatedly through a cycle of increasing brightness in 2
seconds and decreasing brightness in 2 seconds and,
while this is going on, we want to start 1 second later with
another light going through the same cycle. With the
sequential programming we used so far this is very
difficult – certainly if the cycles differ in duration and if
there are more than two.
We would like to have a feature that allows us to start one
process and while this process is running, we start
another process independently. This feature is offered by
‘threading’ (discussed in detail in chapter 12 Real-time
applications). The example in the box shows how to start
a thread (you can try this exercise after reading chapter
12; don’t forget to switch the ports to input and stop the
objects).

import pigpio
import time

pin_r=21
pwm_r=pigpio.pi() # object is made as instance from class
pwm_r.set_mode(pin_r,pigpio.OUTPUT) # makes the port an output port
pwm_r.set_PWM_frequency(pin_r,1) # frequency is set to 1 Hz
pwm_r.set_PWM_dutycycle(pin_r,25) # duty cycle is set to 25 %
time.sleep(5)
pwm_r.set_mode(pin_r,pigpio.INPUT) # pwm signal is removed by making pin_r input
pwm_r.stop() # object is removed

import pigpio
from threading import Thread
import time as t
red= 40
blue=38
:
def completeCycleRed():
:
def completeCycleBlue():
:
threadRed=Thread(target=completeCycleRed)
threadRed.start()
t.sleep(1)
threadBlue=Thread(target=completeCycleBlue)
threadBlue.start()
:

don’t forget to enter the command
sudo pigpiod in the terminal; this
creates a daemon

Handout Workshop 2019 – Microcomputers in Technical Applications page 11

6 Moving a robot arm
The 3 DOF (degrees of freedom) robot arm uses 3 servo motors.
The position of the servo motor is set by a PWM signal based on a frequency of 50
Hz. With a duty cycle of about 5% the servo angle will be at its minimum (-90
degrees); if the duty cycle is 7.5 % the servo will be at its center position (0 degrees)
and if it is about 10 % it will be at its maximum (+90 degrees).
Since the range of the duty cycle in the PWM method in pigpio is 0 – 255: 7.5% is
about 18, 5% is about 12 and 10% is about 24.
Connect the bottom servo (red: positive of external power supply; black: ground of
external power supply and Raspberry; yellow: PWM input signal). We will use port
GPIO21 in BCM numbering (in BOARD numbering pin 40) of the Raspberry for the
PWM signal.
Enter and run the program in the box (make sure you know the meaning of each of
the statements). In the program we use the keyboard keys (in this case ‘ a’ and ‘ s’
but you can take any other combination) to rotate the servo.

Note: you will notice that the servo has a hysteresis (that means that when it changes direction, it takes an extra step); this
hysteresis comes from the internal gearbox.

Connect the other two servos. Chose pins to supply the PWM signal.
Write a program that allows a user to make the three servos turn in
either direction.
The movement to any position is controlled by repetitive pressing of
keys on the keyboard (choose keys for each of the movements).
Obviously three different objects are needed, each with its own
unique name. Test the program by making the robot arm pick up an
object and place it at a predefined position.

Extend the program in such a way that all keystrokes are added to a
list. Print the list at the end.

Extend the program in such a way that after pressing the ‘q’ key the
program asks whether you want to repeat the movement of the
arm. If ‘y’ is hit the servos move to the start position and make the
movement stored in the list. Hint: include a small delay between the
steps read from the list; otherwise the movement goes too fast.
Also, if time allows: various optimizations are possible like making
the delay dependent on the kind of movement – continuous or near
reaching a stop position – and deleting unnecessary movements
from the list.

import pigpio
import time
pin = 21
d=18
pwm=pigpio.pi()
pwm.set_mode(pin,pigpio.OUTPUT)
pwm.set_PWM_frequency(pin,50)
pwm.set_PWM_dutycycle(pin,d)
c=' '
while (c!='q'):
 if c=='a': d=d-1
 if c=='s': d=d+1
 if d<8:
 d=8
 print ("lower limit reached")
 if d>28:
 d=28
 print ("upper limit reached")
 pwm.set_PWM_dutycycle(pin,d)
 print (“The present position is: “,d)
 c=input("enter next move : ")
pwm.set_mode(pin,pigpio.INPUT)
pwm.stop()

start the pigpiod deamon
from the terminal

Handout Workshop 2019 – Microcomputers in Technical Applications page 12

7 LCD display with parallel input

We will import software that uses the LCD display with the
following connections to the GPIO pins (BOARD numbering):
1 - Ground; common to the Raspberry and the separate power
supply
2 - VCC; we will use a separate 5V power supply
3 - (contrast) → connected to Ground
4 - RS → 40 Register Select; 0: Command, 1: Data
5 - (read/write select) → connected to Ground
6 - E → 38 Enable data transfer
11 - D4 → 37 databit 0
12 - D5 → 35 databit 1
13 - D6 → 33 databit 2
14 - D7 → 31 databit 3
15 (5V) and 16 (0V) are connected to the backlight.

1. After making the connections run 'LCDdisplay.py'. Try to understand the program (appendix LCDdisplay.py)
2. You can use the functions from 'LCDdisplay.py' by importing the code in your program (import LCDdisplay as lcd - ‘lcd’ is an
arbitrary name) and calling the functions as for instance lcd.lcd_init()).
Write a program that shows some text on the first line and blinks another text on the second line.

8 Temperature and humidity sensor
The DHT11 consist of a humidity sensing component, an NTC temperature sensor (or thermistor) and an IC on the back side of
the sensor. NTC stands for negative temperature coefficient which means that the resistance decreases as the temperature
increases.

The humidity sensing component has two electrodes with moisture holding substrate between them. So as the humidity
changes, the conductivity of the substrate changes or the resistance between these electrodes changes. This change in resistance
is measured and processed by the IC which makes it ready to be read by the raspberry. For measuring temperature these sensors
use an NTC temperature sensor or a thermistor. A thermistor is actually a variable resistor that changes its resistance with change
of the temperature. These sensors are made by sintering3 of semi-conductive materials such as ceramics or polymers in order to
provide larger changes in the resistance with just small changes in temperature.

3 Sintering is the process of compacting and making solids at low temperature – without melting.

Handout Workshop 2019 – Microcomputers in Technical Applications page 13

The DHT11 sensors have their own single
wire protocol used for transferring the data.
This protocol requires precise timing and
the timing diagrams for getting the data
from the sensors can be found from the
datasheets of the sensors. However, we
don’t have to worry much about these
timing diagrams because we will use the
DHT library which takes care of everything.

Connect the data output of the DHT11 (pin
in middle)4 to pin 40 of the Raspberry (pin
40 = GPIO21; the software we will use uses
BCM numbering). Connect Vcc (5 V) and
ground (pin near led). Test the software in
the box.

See what happens when you breathe over the sensor.
Adjust the program in such a way that temperature and humidity are displayed on the LCD display (hint: to convert the variable
‘temp’ into a string use str(temp); to concatenate two strings use “T = “+ str(temp)).
If time allows add the traffic light in such a way that the yellow and red indicate that the humidity gets over 80 % or 90 %
respectively.

9 Distance measurement

Use the Raspberry Pi distance sensor (ultrasonic sensor HC-SR04). It sends an
ultrasonic pulse and receives it. The timing of this process is received from and
passed on to the Raspberry Pi. Apart from the 5 V power supply and ground it
uses an output from the Pi (trigger) and supplies an input to the Pi (echo). ‘Echo’
is a 5 V output from the sensor so a voltage divider (e.g. 1K and 2K) is to be used
(the inputs for the Pi should have a 3.3 V maximum).
The HC-SR04 sensor requires a short 10 μsec pulse to trigger the module, which
will cause the sensor to start the ranging program (8 ultrasound bursts at 40
kHz) in order to obtain an echo response. So, to create our trigger pulse, we set
the trigger pin high for 10 μsec then set it low again.
Now that we’ve sent our pulse signal, we need to listen to our input pin, which
is connected to ECHO. The sensor sets ECHO to high for the amount of time it
takes for the pulse to go and come back, so our code therefore needs to
measure the amount of time that the ECHO pin stays high. This is done as
follows: in a “while” loop we record the last timestamp for a given condition
with the time.time() function. For example, if a pin goes from low to high, and
we’re recording the low condition using the time.time() function, the recorded
timestamp will be the latest time at which that pin was low.
Our first step must therefore be to record the last low timestamp for ECHO
(pulse_start) e.g. just before the echo signal is received and the pin goes high.
After that we need the last high timestamp for ECHO (pulse_end).

We will take the speed of sound to be
343 m/s (although it is variable,
depending on what medium it’s

traveling through, in addition to the temperature of that medium).
We also need to divide our time by two because what we’ve calculated above is
actually the time it takes for the ultrasonic pulse to travel the distance to the object
and back again.

4 Some types have 4 pins; top view (with raster): left = 5 V, second = data (with 5 k pull up resistor), pin 3 not connected and pin 4 to ground.

import Adafruit_DHT
import time

i=0
while (i<10):
 humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT11, 21)
 humidity = round(humidity, 2)
 temperature = round(temperature, 2)
 if humidity is not None and temperature is not None:
 print ("Temperature: ",temperature)
 print ("Humidity: ",humidity)
 else:
 print ("No data received")
 time.sleep(3)
 i=i+1

Handout Workshop 2019 – Microcomputers in Technical Applications page 14

Run the program in the box. Adjust the port numbers if necessary. Take some measurements with a solid object between 5 cm
and 50 cm (the actual upper limit is higher). For measuring distances: a sheet of A4 paper is 29.7 cm x 21.0 cm.
What is the accuracy of the measurement device? What is the main source of inaccuracy? How can the measurement be made
more accurate?

10 Connecting the analog world
Most of the surrounding world is analog. So, we need special integrated circuits to
connect an analog output to the Raspberry Pi or any other computer. Some sensors
have the conversion integrated in the device – like the temperature and humidity
sensor we used earlier. But in other cases, we have to take care of the AD (analog-
digital) conversion ourselves. The ADS1115 is a popular chip used for this
conversion.

The ADS1115 has the following specifications:
- it has a 16-bit internal configuration register which allows us to program, among
others, the gain of the input signal, the number of samples per second, the start of the conversion and whether we want the
conversion to be continuous.
- it uses a 4-wire bus protocol (a ‘bus’ is a communication system that allows the transfer of data between a master and one of
the slaves). The protocol is referred to as I2C (Inter-IC bus). Apart from the common 3.3 V and Ground the bus consists of a serial
clock (supplied by the master) and a serial data line.
- there are 4 analog inputs (A0 – A3).

Connect 5V and ground from the Raspberry to the AD converter. Connect the 3,3 V from the Raspberry to the A0 input of the AD
converter. Connect the serial data (SDA) and serial clock (SCL) of the ADS1115 to the Raspberry.
Run the program in the box and explain the observations.

Connect a 10k resistor, a photo resistor and a LED in series with the 10k resistor connected to 3.3 V and the LED to Ground.
Measure the voltage over the LED and over the photo resistor when light intensity varies (hint: you can vary the light received by
the photo resistor by putting anything on top of it).

import RPi.GPIO as GPIO # import libraries
import time

GPIO.setmode(GPIO.BOARD)
TRIG = 40 # trigger
ECHO = 38 # echo
GPIO.setup(TRIG,GPIO.OUT) # set GPIO direction (IN / OUT)
GPIO.setup(ECHO,GPIO.IN)

print ("Distance Measurement In Progress")
GPIO.output(TRIG, False)
print ("Waiting For Sensor To Settle")
time.sleep(2)
GPIO.output(TRIG, True) # a short pulse is given to start the measurement
time.sleep(0.00001)
GPIO.output(TRIG, False)
while GPIO.input(ECHO)==0: # the start of the echo pulse is measured
 pulse_start = time.time()
while GPIO.input(ECHO)==1: # the end of the echo pulse is measured
 pulse_end = time.time()
pulse_duration = pulse_end - pulse_start # pulse duration is calculated
distance = pulse_duration * 17150 # distance is calculated
distance = round(distance, 2) # we round the distance in 2 decimal places
print ("Distance:",distance,"cm")
GPIO.cleanup()

Handout Workshop 2019 – Microcomputers in Technical Applications page 15

11 Motion sensors
The motion sensor (also called PIR sensor – passive infrared sensor)
detects a change in infrared (heat) radiation in relation to position. This
change is interpreted as motion. The white cover works as a lens.

Turn ‘Time Delay Adjust’ - the time the output remains high after
detecting motion – fully left (min. 2.5 sec.).
Turn ‘Sensitivity Adjust’ fully left (minimal).
The PIR uses a 5 V power supply.
Use a GPIO port without a pull up resistor (e.g. port 40).

Write a program that prints the output of the PIR every second.
Interpret the result (does the PIR measure movement permanently?).
If time allows you can extend the program in such a way that a LED is switched on whenever motion is detected. How can you
make the LED being on permanently when there is permanent movement?

12 Real-time applications
In real-time environments – as in multi-user environments - it is often necessary to have more than one object being executed at
the same time. The mechanism of threads makes this possible. Of course, there is only a single processor doing the work but by
dividing the time in small time-slots and running each of the threads in a time slot the threads run virtually in parallel. Simplified:
with 3 threads every third slot is allocated to a particular thread so it looks as if there are three processors each running at one
third of the speed.
Sometimes a thread is waiting for
an external event to take place.
In that case the thread has to be
made inactive. When the event
takes place, the inactive state has
to be interrupted so that the
thread continues processing
again.

12.1 Sharing variables among
multiple threads
Sometimes variables have to be
shared among multiple threads.
To use a variable in more than
one thread it must be defined as
global.

Run the program in the box.
The program output shows the
increase of cycle by 1; every 5
seconds cycle increases by 5 from
the thread (as long as it is
running). Both threads (main and

import Adafruit_ADS1x15 # import library
import time
adc=Adafruit_ADS1x15.ADS1115() # create instance (object); adc is an arbitrary name
while True:
 v_binary = adc.read_adc(0) # read voltage through ADC input 0 as a binary number
 v_analog= (v_binary/32768)*4096 # convert the binary value to an analog value (32768 = 4096 mV)
 v_analog=round(v_analog) # v_analog is rounded to the nearest whole number
 print ("analog voltage = ",v_analog, " mV")
 time.sleep(1)

from threading import Thread
import time
global cycle # cycle is defined as global variable
cycle=0 # cycle gets the initial value 0

def FiveSecond(): # function is defined
 global cycle # variable shared with main thread is used
 while (cycle<40): # loop: every 5 sec ‘cycle’ is incremented by 5
 time.sleep(5)
 cycle = cycle + 5
 print ("5 Second Thread cycle + 5: ", cycle)
 print(“Thread terminates”)

FiveSecondThread = Thread(target=FiveSecond) # create instance of Thread
FiveSecondThread.start() # start thread

while (cycle<50): # main program
 cycle = cycle + 1
 print ("Main Program increases cycle + 1: ", cycle)
 time.sleep(1) # one second delay

print ("Main Program terminates”)

Handout Workshop 2019 – Microcomputers in Technical Applications page 16

FiveSecondThread) modify the variable ‘cycle’ and print the value. What happens if the FiveSecondThread continues till cycle is
60?

Threads can be created for a variety of functions. Sensors can be read, a request from another station through the network can
be handled or other actions can be taken while the main program or other threads run at the same time.

Modify the program in such a way that a LED continues blinking while a new value for the frequency can be entered at any time.
Hint 1: the blinking code runs in a separate thread; the main program communicates with the user; a global variable is used for
the frequency;
Hint 2: the function ‘input’ returns a string; to get an integer use: int(input());
Hint 3: be aware that ‘pigpio’ uses BCM numbering (so BOARD numbering port 40 is BCM numbering GPIO21);
Hint 4: if the program terminates in an unexpected way you can terminate the daemon by entering ‘sudo killall pigpiod’ as a shell
command (in the terminal); after that you can start the daemon again with the shell command ‘sudo pigpiod’.

12.2 Interrupt Driven Threads
When we are waiting for an action to take place – for instance a GPIO pin to change state – we can poll the pin permanently
using an infinite loop, but that utilizes a lot of CPU power and makes it even impossible to use the computer for other tasks.
There is however another way to deal with this kind of situations: interrupts.
GPIO interrupts allow threads to wait for GPIO events. Instead of repeatedly checking a pin, the code waits for a pin to be
triggered, essentially using zero CPU power. Interrupts are based on “edge detection”; an edge defining the transition from high
to low “falling edge” or low to high “rising edge”. A change in state, or transition between low and high, is known as an “event”.

How do we detect an interrupt? Obviously looping to check for an interrupt would defeat the point of using it, we would be
“polling” the interrupt function instead of the GPIO pin. However, computers have in hardware and system software a function
implemented that stops a thread from running until the event occurs (no CPU time is wasted since other threads can still run) or
starts a “call-back” function as soon as an interrupt occurs (the main program can continue with other things).
The following example illustrates what is happening: suppose you are waiting for a letter: polling is the act of you waiting at
home all day, holding open the letter box and peering out waiting for the postman to arrive. An interrupt in this scenario would
be a camera that watches the street for the postman. When it spies the postman it calls your mobile phone (the call-back) to let
you know the postman is 10 minutes from your doorstep.

Modify the example of the previous section in such a way that some event is to take place before the incrementing of ‘cycle’ in
the FiveSecondThread is executed once. For generating an event you can make the input high with a pull-up resistor and
switching it to 0. The code in the box shows the modification of the thread that waits for the interrupt (hint: make the main
program run until a KeyboardInterrupt terminates it – this allows you for more time to generate the interrupt).

Adjust the program in such a way that the interrupt can be repeated. Every time an interrupt is given the counter should be
incremented by 5 just once. What do you notice if no precautions are being taken? How can multiple interrupts be avoided?

13 Communication
The Raspberry Pi has on-board Wifi and Bluetooth. For the
communication example we will use TCP/IP over wifi.
Data exchange in Python is based on sockets. A socket is an
endpoint for communication between two machines. The
connection between two sockets can be considered as a
(bi-directional) pipe: what goes in at one side comes out at
the other side. The medium can be the Local Area
Network, Wide Area Network or the Internet. Also
Bluetooth programming in Python follows the socket
programming model.

def FiveSecond(): # function is defined
 global cycle # the same variable as in the main thread is used
 G.wait_for_edge(p, G.BOTH) # wait for any edge at port p; alternatively: G.RISING or G.FALLING
 cycle = cycle + 5
 print ("5 Second Thread cycle + 5: ", cycle)

Handout Workshop 2019 – Microcomputers in Technical Applications page 17

As said before a socket represents an endpoint of a communication channel. A channel is always formed between a client and a
server:
Server: A server is a machine that waits for client requests and serves or processes them.
Client: A client on the other hand is the requester of the service.

Sockets are not connected when they are first created, and are useless until a call to either connect (client application) or accept
(server application) completes successfully. Once a socket is connected, it can be used to send and receive data until the
connection fails due to link error or is terminated by the user software.

The class ‘socket’ is a predefined Python class in the Raspberry Pi. By importing it we have all the communication methods
available (for TCP/IP but also for Bluetooth and other protocols).

A TCP/IP address - in version 4 - is represented as a string of 4 octets (together forming the 32-bit address). For example
192:168:0:181.
The IP address identifies the device e.g. the computer.
However, an IP address alone is not sufficient for running network applications, as a computer can run multiple applications
and/or services.
Just as the IP address identifies the computer, the network port identifies the application or service running on the computer.

The following analogy illustrates the meaning of address and port number:
If you have an apartment block the IP address corresponds to the street address. All of the apartments share the same street
address. However, each apartment also has an apartment number which corresponds to the Port number.
A Port number uses 16 bits - so Ports can have values from 0 to 65535 decimal.
Port numbers up to 49151 have specific functions. Above that number they can be used by user programs.
In summary: a socket is the combination of IP address plus port number.

The examples in the box show how to establish a connection using a TCP/IP socket, sending some text from the client to the
server, the server returning the same text in uppercase. The client terminates with ’q’ and sends disconnecting code.

Server:

import socket # the class ‘socket’ is imported
server_addr = ("192.168.0.xxx", 50000) # the IP address of the server should be entered + any port of server
mySocket = socket.socket() # the object ‘mySocket’ is created (instance of method socket of class socket)
mySocket.bind(server_addr) # mySocket is linked to the given address
print(“waiting for connection”)
mySocket.listen(1) # wait for connection request; 1 = the number of simultaneous connections
conn, client_addr = mySocket.accept() # conn = new socket object;
print ("Connection from: ", str(client_addr))
while True:
 data = conn.recv(1024).decode() # transmitted message is decoded
 if not data: # when client sends termination code
 break # exit from loop (server closes connection)
 print ("from connected user: ", data)

data = data.upper() # message converted to uppercase
 print ("sending: ", data)
 conn.send(data.encode()) # encoded data are sent
conn.close()

Handout Workshop 2019 – Microcomputers in Technical Applications page 18

Client:

The server-socket that is used to accept incoming connections must be attached to operating system resources with the bind
method; ‘bind’ takes in a tuple specifying the IP address plus a port number to listen on. Once a socket is bound, a call to listen
puts the socket into listening mode and it is then ready to accept incoming connections. In the line ‘mySocket.listen(1)’ the ‘1’
indicates that only 1 connection is accepted
The client-socket that is used to establish an outgoing connection connects to the server using the specified server address (in
the workshop set-up: IP address 192.168.0.xxx5 and the port number 50000). Now what to do if you only know the name of the
RPi? By running the command ‘ifconfig’ you can find the various IP addresses. Under ‘wlan0’ the line ‘inet’ shows the IP address
(192.168.0.xxx ; the last 4 octets are a number allocated by the router - it is different for everybody

Test the program above by having two Pi’s communicating (determine who is server and who is client). Which one, the server or
the client, should be started first?

Write a client and a server program in such a way that the client asks the server for the position of a switch at the server and
switches a LED on or off accordingly.

14 The camera
First of all, with the Pi switched off, you’ll need to connect the Camera Module to the Raspberry Pi’s camera port, then start up
the Pi and ensure the software is enabled (sudo raspi-config; Interfacing Options; Camera).
Enter the following code:

You can rotate the image by 90, 180, or 270 degrees by including: camera.rotation = 180 (or any other value). You can view the
picture from the (raspberry) desktop, i.e. the path given in the capture method.
Now try adding a loop to take five pictures in a row:

5 This is the address range of the wifi network; the address might be different in a different setup.

import socket
server_addr=("192.168.0.xxx",50000) # the IP address of the server + port number of server should be entered
mysocket=socket.socket()
mysocket.connect(server_addr)
message=input (“message to be sent --→ “)
while message!="q":
 mysocket.send(message.encode()) # client sends message
 data=mysocket.recv(1024).decode() # client receives data from server
 print("received from server: ",data)
 message=input("next message to be sent ---> ")
mysocket.close() # disconnect is sent to server; object is terminated

from picamera import PiCamera # import the class PiCamera from the picamera library
import time
camera = PiCamera() # an object ‘camera’ is created
camera.start_preview() # the lens is opened
time.sleep(2) # 2 sec are given for adjusting parameters
camera.capture('/home/pi/Desktop/image.jpg') # a picture is taken
camera.stop_preview() # the lens is closed

for i in range(5):
 time.sleep(2)
 camera.capture('/home/pi/Desktop/image%s.jpg' %i)
with the construction %s %i the value of i is converted into a string and included in the text; in that way the pictures
get successive numbers and in that way unique names

Handout Workshop 2019 – Microcomputers in Technical Applications page 19

Appendix LCDdisplay.py

The program consists of the following components:
- imports of the objects we are going to use
- some definitions to make the program more readable and maintainable
- defining functions
* main: the main program; it is composed of an initialization + an endless loop (the loop is left with an exception)
* lcd_init: initialization
* lcd_byte: transfer of a byte
* lcd_toggle_enable: a supporting function used in lcd_byte
* lcd_string: transfer of a string consisting of a number of bytes
- the actual program consisting of a call to ‘main’, the code to be executed with an exception and the termination.

import RPi.GPIO as GPIO #import of GPIO module from RPi library
import time # import of time module

Define GPIO to LCD mapping (based on BOARD numbering)
LCD_RS = 40 # Register Select: low = command, high = data
LCD_E = 38 # Enable (toggling this input means data is being transfered)
LCD_D4 = 37 # the next 4 inputs carry the data
LCD_D5 = 35
LCD_D6 = 33
LCD_D7 = 31

Define some device constants
LCD_WIDTH = 16 # Maximum characters per line
LCD_CHR = True # Register Select: high = data
LCD_CMD = False # Register Select: low = command
LCD_LINE_1 = 0x80 # LCD RAM address for the 1st line
LCD_LINE_2 = 0xC0 # LCD RAM address for the 2nd line

Timing constants
E_PULSE = 0.0005 # 2 constants to create a proper toggle signal
E_DELAY = 0.0005

def main(): # Main program block
 lcd_init() # Initialize display
 while True:
 lcd_string("workshop 2019",LCD_LINE_1) # Send some text to be displayed in line 1
 lcd_string("Raspberry Pi",LCD_LINE_2) # Send some text to be displayed in line 2
 time.sleep(3) # 3 second delay
 lcd_string("in Technical",LCD_LINE_1)
 lcd_string("Applications",LCD_LINE_2)
 time.sleep(3) # 3 second delay

def lcd_init():
 GPIO.setmode(GPIO.BOARD) # Use BOARD GPIO numbers
 GPIO.setup(LCD_E, GPIO.OUT) # E is set to output
 GPIO.setup(LCD_RS, GPIO.OUT) # RS is set to output
 GPIO.setup(LCD_D4, GPIO.OUT) # DB4 is set to output
 GPIO.setup(LCD_D5, GPIO.OUT) # DB5 is set to output
 GPIO.setup(LCD_D6, GPIO.OUT) # DB6 is set to output
 GPIO.setup(LCD_D7, GPIO.OUT) # DB7 is set to output
 lcd_byte(0x33,LCD_CMD) # 0011 0011 Initialize
 lcd_byte(0x32,LCD_CMD) # 0011 0010 Initialize
 lcd_byte(0x06,LCD_CMD) # 0000 0110 Cursor move direction
 lcd_byte(0x0C,LCD_CMD) # 0000 1100 Display On,Cursor Off, Blink Off

Handout Workshop 2019 – Microcomputers in Technical Applications page 20

 lcd_byte(0x28,LCD_CMD) # 0010 1000 Data length, number of lines, font size
 lcd_byte(0x01,LCD_CMD) # 0000 0001 Clear display
 time.sleep(E_DELAY)

def lcd_byte(bits, mode):
 GPIO.output(LCD_RS, mode) # selects for command or data
 GPIO.output(LCD_D4, False) # make data inputs 0
 GPIO.output(LCD_D5, False)
 GPIO.output(LCD_D6, False)
 GPIO.output(LCD_D7, False)
 if bits&0x10==0x10: GPIO.output(LCD_D4, True) #make the data input 1 if corresponding bit is 1
 if bits&0x20==0x20: GPIO.output(LCD_D5, True)
 if bits&0x40==0x40: GPIO.output(LCD_D6, True)
 if bits&0x80==0x80: GPIO.output(LCD_D7, True)

 lcd_toggle_enable() # Toggle 'Enable' pin

 GPIO.output(LCD_D4, False) # same as above for low bits
 GPIO.output(LCD_D5, False)
 GPIO.output(LCD_D6, False)
 GPIO.output(LCD_D7, False)
 if bits&0x01==0x01: GPIO.output(LCD_D4, True)
 if bits&0x02==0x02: GPIO.output(LCD_D5, True)
 if bits&0x04==0x04: GPIO.output(LCD_D6, True)
 if bits&0x08==0x08: GPIO.output(LCD_D7, True)

 lcd_toggle_enable() # Toggle 'Enable' pin

def lcd_toggle_enable(): # Toggle enable
 time.sleep(E_DELAY)
 GPIO.output(LCD_E, True) # E goes up
 time.sleep(E_PULSE)
 GPIO.output(LCD_E, False) # E goes down
 time.sleep(E_DELAY)

def lcd_string(message,line): # Send string to display
 message = message.ljust(LCD_WIDTH," ") # text is left justified with spaces added
 lcd_byte(line, LCD_CMD) # sends the code for line 1 or line 2 as a command
 for i in range(LCD_WIDTH): # sends the characters one by one
 lcd_byte(ord(message[i]),LCD_CHR) # ‘ord(message[i]’ is the character at position i

if __name__ == '__main__': # if object started as program the code is executed
 try:
 main() # call the main function
 except KeyboardInterrupt: # pressing a key causes a keyboard interrupt
 pass # with a keyboard interrupt the loop is left
 finally: # the code in the finally clause is always executed
 lcd_byte(0x01, LCD_CMD) # command ‘clear display’ is sent
 lcd_string("Goodbye!",LCD_LINE_1) # text is sent
 GPIO.cleanup() # all ports used in program are set to input (safer)

